

又名为图的人名 经 日本人

3.4 Zeros of Polynomial Functions

We know that an *n*th-degree polynomial can have at most n real zeros.

Now, in the complex number system, this statement can be improved.

That is, in the complex number system, every *n*th polynomial function has *precisely n* zeros.

Fundamental Theorem of Algebra.

If f(x) is a polynomial function of degree n, where n > 0, then f has at least one zero in the complex number system.

Linear Factorization Theorem.

If f(x) is a polynomial function of degree n, where n > 0, then f has precisely n linear factors $f(x) = an(x - c_1) (x - c_2)... (x - c_n)$ where $c_1, c_2, ..., c_n$ are complex zeros.

a)
$$f(x) = x - 2$$

b)
$$f(x) = x^2 - 6x + 9$$

 $(x-3)(x-3)$

c)
$$f(x) = x^3 + 4x$$

$$\chi(x^2 + 4)$$

$$\chi(x^2 + 4)$$

$$\chi(x + 2i)(x - 2i)$$

d)
$$f(x) = x^4 - 1$$

 $(x^2 + 1)(x^2 - 1)$
 $(x+i)(x-i)(x-1)(x+1)$

Rational Zero Test

If a polynomial has integer coeffecients, then every rational zero of the polynomial has the form:

zero =
$$\frac{p}{q}$$

where p and q have no common factors and,

p = a factor of the constant term q = a factor of the leading coefficient

Possible rational zeros:

factors of constant
factors of leading coeffecient

Find the rational zeros of:

$$f(x) = x^3 + 2x^2 - x - 2$$

$$P=\pm 1,2$$
 $Q=\pm 1$
 $Q=\pm 1$

Find the rational zeros of:

$$f(x) = x^4 - x^3 + x^2 - 3x - 6$$

Find the rational zeros of: $f(x) = 2x^3 + 3x^2 - 8x + 3$

$$8x^{3} + 2x^{2} - 5x - 24$$

$$P = \pm 1, 2, 3, 4, 6, 8, 12, 24$$

$$R = \pm 1, 2, 4, 8$$

$$P = \pm 1, 2, 4, 8$$

$$P = \pm 1, 2, 3, 4, 6, 4, 12, 24, \pm \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}$$

Conjugate Pairs

$$(3+i)(3-i)$$
 $(2-5i)$ $(2+5i)$

If f is a polynomial function with real coefficients, then whenever a + bi is a zero of f, a - bi is also a zero of f.

Find a fourth degree polynomial with real coefficients that has -1, -1, and 3i as zeros

$$(x+1)(x+1)(x-3i)(x+3i)$$

 $(x^2+2x+1)(x^2+9)$
 $x^4+9x^2+2x^3+18x+x^2+9$
 $x^4+2x^3+10x^2+18x+9$

Find all the zeros of:

$$f(x) = x^{4} - 3x^{3} + 6x^{2} + 2x - 60$$
given that $1 + 3i$ is a zero
$$(x - (1+3i)(x - (1-3i)))$$

$$(x - (1+3i)(x - (1+3i)))$$

$$(x - (1+3i)(x - (1+3i))$$

$$(x - (1+3i)(x - (1+3i)(x - (1+3i))$$

$$(x - (1+3i)(x - (1$$

Use the given zero to find all the zeros of the function:

$$f(x) = 2x^{3} + 3x^{2} + 50x + 75$$

$$zero = 5i_{,-5i}$$

$$(x-5i)(x+5i) = x^{2} + 25$$

$$2x + 3$$

$$x^{2} + 0x + 25$$

$$2x^{3} + 9x^{2} + 50x + 75$$

$$2x^{3} + 9x^{2} + 50x$$

$$3x^{2} + 0x + 75$$

$$3x^{2} + 0x + 75$$

$$3x^{2} + 0x + 75$$